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The Lagrange-Slater dual

max bT y min cT x

AT y + s = c Ax = b

s ∈ K x ∈ K∗,

Weak duality x, y, s: cT x− bT y ≥ 0 (duality gap)

Strong duality If one problem is strictly feasible

the other problem is solvable
zero duality gap at optimality
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Without the Slater condition

max u2u2 0 0
0 u1 u2

0 u2 0

 �

α 0 0
0 0 0
0 0 0

 ,

min αV11

V22 = 0
V11 + 2V23 = 1

V � 0

Primal: u2 = 0, optimum is 0.

Dual: V22 = 0 → V23 = 0 → V11 = 1, optimum is α.

Problem: the feasible set is too small
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The regularized problem

Minimal cone (Kmin): spanned by the feasible solutions

Regularized problem

max bT y max bT y min cT x

AT y + s = c AT y + s = c Ax = b

s ∈ K s ∈ Kmin x ∈ K∗min,

equivalent
Slater regular

What is Kmin and K∗min?

construction?
structure?
complexity?
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Homogeneous cones - classical theory

Definition (Vinberg, 1963)

K is homogeneous if for all u, v ∈ intK there is a linear map
M such that Mu = v and MK = K.

special polyhedral, Lorentz, semidefinite and much more

not self-dual (if yes, then symmetric)

dual is homogeneous

rank: measure of complexity, r(K)
r(K) = r(K∗)

IP complexity: O
(√

r(K) log(1/ε)
)

product of elements can be defined
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Homogeneous cones - matrix representation

Generalized matrices: (
v0 vT

u u0

)
Multiplication (as usual):(

v0 vT

u u0

)(
q0 qT

p p0

)
=
(

v0q0 + vT p v0q
T + p0v

T

u0p + q0u qT u + u0p0

)
Factorization:(

v0 uT

u u0

)
=

(√
v0 0
u√
v0

√
u0 − ‖u‖2

v0

)√v0
uT
√

v0

0
√

u0 − ‖u‖2
v0


Homogeneous cones: ’semidefinite’ general matrices

Rank: ’size’ of the matrix
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Exact dual for the homogeneous case

K is homogeneous

max bT y min cT (x+zm)

AT y + s = c A(x+zm) = b

s ∈ K cT (xi + zi−1) = 0, i = 1, . . . ,m

A(xi + zi−1) = 0, i = 1, . . . ,m

z0 = 0

xi − zizi∗ ∈ K, i = 1, . . . ,m

x ∈ K∗

zero duality gap

primal feasible: primal bounded ⇔ dual feasible

quadratic constraint?
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What is u− ww∗ ∈ K?

Schur complement for matrices:

U −WW T � 0 ⇔
(

I W T

W U

)
� 0

Siegel cone:

SC(K) = {(u, w, t) : t > 0, tu− ww∗ ∈ K}

if K is homogeneous SC(K) is homogeneous
every homogeneous cone is a Siegel cone
r(SC(K)) = r(K) + 1
explicit barrier function can be constructed
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Schur complement for second order cones

Rotated Lorentz cone (homogeneous):

Lr =
{

(x0, x1, x) ∈ Rn+2 : x0 ≥ 0, x0x1 − ‖x‖2 ≥ 0
}

Product:

(x0, x1, x)(y0, y1, y) = (x0y0+xT y, x1y1+xT y, x0y+y1x)

(u0, u1, u)− (w0, w1, w)2 ∈ Lr ⇔
1

(
w0 w

) (
wT w1

)(
w0

wT

)
u0 uT(

w
w1

)
u v0

 ∈ SC(Lr)

Everything is linear again!
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Conclusions and future research

Complete duality theory for homogeneous cones

without Slater condition
explicit dual

Generalized Schur complement

linearization
rank increases by 1

Implementation of homogeneous solvers

currently modelled as SDP
more efficient modelling with homogeneous cones

Dual complexity
r(K) ≥ r(Kmin) = r (K∗

min) � r(K)(m + 1) + m
Constructive dual with better complexity?



Homogeneous
duality

Imre Pólik
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