Iterative methods for symmetric eigenvalue problems

Imre Pólik, PhD
McMaster University
School of Computational Engineering and Science

February 11, 2008
Outline

1. The power method and its variants
 - Power method
 - Inverse power method
 - Rayleigh quotient iteration
 - Subspace iteration method

2. Krylov subspace methods
 - Rayleigh-Ritz method
 - Lanczos method
 - Implicitly restarted Lanczos method
 - Band Lanczos method

3. Jacobi-Davidson method
Power method

- Find the dominating eigenvalue/eigenvector

\[v_{k+1} = y_k / \| y_k \|_2 \]
\[y_{k+1} = Av_{k+1} \]
\[\lambda_{k+1} = v_{k+1}^T y_{k+1} \]

- Only multiplication is involved
- Converges unless \(v_0 \perp v_{\text{max}} \)
- Convergence rate: \(|\lambda_{\text{max}} / \lambda_{\text{max}-1}| \)
- Problems
 - multiple/close largest eigenvalues
 - only the largest eigenvalue is computed
Inverse power method

- Inner eigenvalues: \(\lambda \left((A - \sigma I)^{-1}\right) = \frac{1}{\lambda(A) - \sigma} \)
- Apply the power method to \((A - \sigma I)^{-1}\)

\[
\begin{align*}
v_{k+1} &= y_k / \|y_k\|_2 \\
y_{k+1} &= (A - \sigma I)^{-1}v_{k+1} \\
\lambda_{k+1} &= v_{k+1}^T y_{k+1}
\end{align*}
\]

- Converges to the dominating eigenvalue of \((A - \sigma I)^{-1}\)
- Converges unless \(v^0 \perp v_{\text{max}}\)
- Convergence rate: \(|(\lambda_{\text{max}} - \sigma)/(\lambda_{\text{max}} - 1 - \sigma)|\), linear
- Viable only if \((A - \sigma I)y = v\) is easily solvable
Rayleigh quotient iteration

- Change the shift in each iteration

 \[v_{k+1} = \frac{y_k}{\|y_k\|_2} \]
 \[\sigma_{k+1} = v_{k+1}^T Av_{k+1} / \|v_{k+1}\|^2 \]
 \[y_{k+1} = (A - \sigma_{k+1} I)^{-1} v_{k+1} \]
 \[\lambda_{k+1} = v_{k+1}^T y_{k+1} \]

- Convergence properties are unclear
 - Finds an eigenvalue faster than inverse iteration
 - Cubic convergence
 - Does not necessarily find \(\lambda_{\text{max}} \)
 - May not converge to an eigenvalue
 - \(A - \sigma_{k+1} I \) will become singular
 - New factorization in every iteration
Subspace iteration method

- Invariant subspaces are robust, eigenvectors are not

\[
\begin{pmatrix}
2 & 0 & 0 \\
0 & 1 & \epsilon \\
0 & \epsilon & 1 \\
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 + \epsilon \\
\end{pmatrix}
\]

- It is better to identify the invariant subspaces

QR factorize

\[
Y_k = V_{k+1} R_{k+1}
\]

\[
Y_{k+1} = AV_{k+1}
\]

\[
H_{k+1} = V_{k+1}^T Y_{k+1}
\]

- \(Y, V \in \mathbb{R}^{n \times p}, H \in \mathbb{R}^{p \times p}\)
- The eigenvalues of \(H\) are the largest eigenvalues of \(A\)
- Clustered (not multiple) eigenvalues
- Choosing \(p\) smartly
- Can also be applied to \((A - \sigma I)^{-1}\)
- Software: EA12 in HSL
Krylov subspace methods

- Problems with power iteration based methods
 - Extremal eigenvalues only
 - Internal eigenvalues require solution of a linear system
 \[A^k v \] is used as the best guess for an eigenvector

- Krylov subspace: \(\text{span}\{v, Av, \ldots, A^k v\} \)

- Find the best approximate eigenvector (Ritz vectors)

- Columns of \(Q_k \) are orthogonal, span Krylov space

- \(\lambda(Q_k^T A Q_k) \) approximates \(\lambda(A) \)

- Choose a \(Q_k \) to simplify the structure of \(Q_k^T A Q_k \)

- \(T_k \)
Lanczos method

- Gradually build the Krylov subspace
- Maintain an orthogonal basis Q_k, T_k tridiagonal
- Find the corresponding Ritz vectors

\begin{align*}
v_0 &= 0, \beta_1 = 0, v_1 \text{ random unit} \\
\text{repeat} & \\
q_j &= Av_j - \beta_j v_{j-1} \\
\alpha_j &= q_j^T v_j \\
q_j &= q_j - \alpha_j v_j \\
\beta_{j+1} &= \|q_j\| \\
v_{j+1} &= q_j / \beta_{j+1}
\end{align*}

- Extreme eigenvalues converge first
- Can also be applied to $(A - \sigma I)^{-1}$
- Memory consumption increases
Implicitly restarted Lanczos method

- Prevents k growing too much
- Applies shifts μ_i to the algorithm
- Equivalently, changes v_0
- How to choose the shifts?
- Flexible eigenvalue configurations
- Locking/purging eigenvalues
- Software: ARPACK (also in Matlab)
Band Lanczos method

- Multiple starting vectors, finds more eigenvalues
 \[\text{span} \{ V, AV, \ldots, A^k V \} \]
- Suitable for multiple/clumped eigenvalues
- \(T \) is block tridiagonal
Jacobi-Davidson method

- Problems with Lanczos
 - only efficient if the eigenvalues are well separated
 - needs $(A - \sigma I)^{-1}y$ for internal eigenvalues

- Build a different set of orthogonal vectors spanning the Galerkin vectors

- Interior eigenvalues without inversion

- Very good if A has multiple eigenvalues

- Software: JDQR (Matlab)
Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors.

James W. Demmel.

Applied Numerical Linear Algebra.