Imre Pólik

Course outline

Outling

**Basics** 

Computing

Linear systems

Literatur

# Ces 703

Imre Pólik, PhD

McMaster University School of Computational Engineering and Science

2007/2008 Winter Term

Imre Pólik

Course outline

Outline

Basic

Compating

Linear systems

Literatur

#### Overview

- Linear systems
  - solution of Ax = b
  - least squares problems
  - eigenvalues (real symmetric)
- How to exploit structure, sparsity?
- Why does a method work/does not work in practice?
- What are the challenges in implementing a certain algorithm?
  - accuracy
  - speed
  - memory consumption
  - sparsity, structure
  - parallelizability
- When to use particular method?
- Available implementations

Imre Pólik

Course outline

Outline

Basics

Computing

Linear systems

Literature

# Organizational matters

Instructor: Imre Pólik, PhD (CES)

imre.polik@gmail.com

http://imre.polik.googlepages.com

ITB 126, #24030

Office hours: Monday, 12:30-1:30 (right after the class)

Coursework: 2 assignments for 20% each

takehome project for 60% (or final?)

schedule TBD

Imre Pólik

Course outline

Outline

Basics

Computi

Linear systems

Literature

## Course outline I

- Week 1: Basics, structured/sparse matrices, storage schemes, elementary operations. Computer architectures, BLAS, LAPACK. Linear systems, solvability. Conditioning, error analysis.
- Week 2: Direct methods for linear systems: Gaussian elimination, Iterative refinement. LU and Cholesky factorizations. Pivoting, fill-in, column/row orderings.
- Week 3: Iterative methods for linear systems: Jacobi, Gauss-Seidel, Krylov method. Convergence. Preconditioning, conjugate gradient algorithm.

Imre Pólik

Course outline

Outline

Basics

Computii

Linear systems

Literature

## Course outline II

- Week 4: Linear least squares problems: normal equations. QR factorization, Householder transformation, Givens rotation. Solution using singular value decomposition.
- Week 5: Real symmetric eigenvalue problems: sensitivity of eigenvalues, solution by factorization, approximation, largest, smallest eigenvalues.
- Week 6: Power method, inverse iteration, Rayleigh quotient, Jacobi method, Lanczos method.

Imre Pólik

Course outline

Outline

**Basics** 

Computi

Linear systems

Literatur

## An introduction to linear systems

Imre Pólik, PhD

McMaster University School of Computational Engineering and Science

January 7, 2008

Imre Pólik

Course outline

Outline

**Basics** 

Linear systems

Literatui

## Outline

- Basic concepts
  - Sparse, dense and structured matrices
  - Storage schemes
- 2 Computing resources
  - Hardware
  - Software
  - Algorithms
- 3 Linear systems
  - Solvability
  - Condition number
  - Solution of triangular systems

Imre Pólik

Course outline

Outline

Basics Sparse-dense

Linear systems

### Basic concepts

- What is a sparse matrix?
  - enough zeros that it is worth taking advantage of them (Wilkinson)
  - no fixed percentage limit exists
  - depends on the application
- What is a structured matrix?
  - enough structure that ...
  - examples: lower triangular, symmetric, low rank, few parameters (Hilbert), etc.
  - can be structured and sparse!
- What is a dense matrix?
  - neither sparse nor structured
  - every element has to be manipulated
  - rare in practice

Imre Pólik

Course outline

Outline

Basics Sparse-dense

Computing

Linear systems

Literature

#### A bit more about structure

- Where is this matrix coming from?
  - dense matrices are rare
- Storage can destroy the structure due to truncation
  - floating point Hilbert matrix?

$$\left(\begin{array}{cccc}
1 & 0.500 & 0.333 \\
0.500 & 0.333 & 0.250 \\
0.333 & 0.250 & 0.200
\end{array}\right)$$

- similar issue with rank 1 matrices
- Adapt the algorithm to the structure (hardcoding)

Imre Pólik

Course outline

Outline

Basics Sparse-den Storage

Computin

Linear systems

Literature

## Storage schemes

- Dense matrices
  - row (C) or column (Fortran) oriented
  - other schemes for efficiency
- Sparse matrices
  - data and indices (overhead!)
  - some operations are cumbersome
  - multiple storage
- Structured matrices
  - symmetric: store half of the matrix
  - narrow band: store numbers diagonally
  - rank 1: store the factors

Imre Pólik

Course outline

Outline

Basics

Hardware Software

Linear systems

Literature

#### Hardware architectures

- Word length
  - 32, 64, 128bit
  - larger address space
  - more operations per cycle
- Parallelism
  - shared or distributed memory
  - communication cost
- Cache architecture
  - access to RAM is slow
  - L1, L2, L3
  - the faster the smaller
  - avoid cache misses, reuse data already in cache
  - contiguity

Imre Pólik

Course outline

Outline

**Basics** 

Comput: Hardware

Software Algorithm

Linear systems

Literature

#### Software resources

- Programming languages and compilers
  - interpreted: Matlab, Octave, Scilab, Python, etc.
  - compiled: C/C++, Fortran, Java
- Prebuilt libraries
  - don't reinvent the wheel!
  - BLAS, LAPACK, ScaLAPACK, MA27, MA47, Sparspak

Imre Pólik

Course outline

Outline

**Basics** 

Hardware Software

Linear systems

Literature

#### **BLAS and LAPACK**

- Building blocks for linear algebra routines
  - BLAS 1: vector-vector operations
  - BLAS 2: matrix-vector operations
  - BLAS 3: matrix-matrix operations
  - LAPACK: factorizations, solution of systems
- Available for most OSs and architectures
  - MKL (Intel)
  - ACML (AMD)
  - VecLib (Apple)
  - SPL (SUN)
  - GotoBLAS (TACC, various platforms)
  - ATLAS (GPL, compiled from source)
- Efficient parallel implementations
- Mostly dense but special routines for:
  - symmetric
  - narrow band
  - low rank

Imre Pólik

Course outline

Outline

**Basics** 

Hardware Software Algorithms

Linear systems

Literatur

## Algorithms in general

- Direct (finite)
  - exact result (in exact arithmetic)
  - higher storage cost
  - typical for dense matrices
  - examples: LU, Cholesky factorization, Gaussian elimination
- Iterative (asymptotic)
  - no inversions
  - approximate result
  - low storage
  - very efficient for sparse matrices
  - examples: power iteration for largest eigenvalue

$$x_{k+1} = \frac{Ax_k}{\|Ax_k\|} \tag{1}$$

Imre Pólik

Course outline

Outline

Basics

Computing

Linear systems
Solvability
Conditioning
Triangular system

Literature

## Solution of linear systems

Solve Ax = b, where  $x \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$ ,  $A \in \mathbb{R}^{m \times n}$ 

m < n: underdetermined, infinitely many solutions (if any)

m > n: overdetermined, no solution

closest solution, least squares (see Week 4)

m=n: unique solution if A is full rank, underdetermined otherwise

The interesting case for now:  $m=n,\ A$  is full rank, square, positive definite,  $\det A \neq 0$ 

Imre Pólik

Course outline

Outline

Basics

Computin

Linear systems Solvability Conditioning Triangular system

Literature

#### Condition number

Solve Ax = b, where  $x, b \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{n \times n}$ , A is full rank  $(\det A \neq 0)$ 

- $A^{-1}$  exists,  $x = A^{-1}b$
- Relative error in x:  $(x + \Delta x = A^{-1}(b + \Delta b))$

$$\frac{\|\Delta x\| / \|x\|}{\|\Delta b\| / \|b\|} = \frac{\|A^{-1}\Delta b\| / \|A^{-1}b\|}{\|\Delta b\| / \|b\|} \le \underbrace{\|A^{-1}\| \|A\|}_{\kappa(A)} \tag{2}$$

- ullet  $\kappa(A)$  is the ratio of the largest and smallest singular value of A
- if  $\kappa(A)$  is large then A is close to singular and the system is called ill-conditioned
- numerical solution will suffer loss of accuracy regardless of the algorithm, even in exact arithmetics!

Course outline

Outline

Basics

Computing

Linear systems
Solvability
Conditioning
Triangular systems

Literatur

# Triangular systems (lower)

Row oriented approach

$$i = 1, \dots, n$$
  
 $x_i = (b_i - \sum_{k=1}^{i-1} A_{ik} x_k) / A_{ii}$ 

- ullet can't exploit sparsity in x
- Column oriented approach

$$i = 1, ..., n$$
  
 $x_i = b_i/A_{ii}$   
 $b_{i+1:n} \leftarrow b_{i+1:n} - x_i A_{i+1:n,i}$ 

- ullet exploits sparsity in x
- ullet operation count: Ax
- Building block for general systems

Imre Pólik

Outline

**Basics** 

Linear systems

Literature



Alan Edelman.

MIT 18.337: Applied parallel computing.

Lecture notes, 2004.

Chapter 4 and 5.



Alan George and Joseph W. Liu.

Computer Solutions of Large Sparse Positive Definite Systems.

Prentice Hall, 1981.