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Abstract

In this paper we introduce a novel reinforcement learning algorithm called event-learning. The algorithm usesevents,
ordered pairs of two consecutive states. We define event-value function and we derive learning rules. Combining our method
with a well-known robust control method, the SDS algorithm, we introduce Robust Policy Heuristics (RPH). It is shown that
RPH, a fast-adapting non-Markovian policy, is particularly useful for coarse models of the environment and could be useful
for some partially observed systems. RPH may be of help in alleviating the ‘curse of dimensionality’ problem.
Event-learning and RPH can be used to separate time scales of learning of value functions and adaptation. We argue that the
definition of modules is straightforward for event-learning and event-learning makes planning feasible in the RL framework.
Computer simulations of a rotational inverted pendulum with coarse discretization are shown to demonstrate the principle.
   2003 Elsevier B.V. All rights reserved.
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1 . Introduction tion algorithms(Watkins, 1989; Jaakkola, Jordan, &
Singh, 1994; Tsitsiklis & Van Roy, 1996; Sutton,

´In a common formulation of the reinforcement 1996; Szepesvari & Littman, 1999).The basic
learning (RL) problem an agent improves its be- properties of most of the theoretical results are that
havior by observing the outcomes of its own interac- they assume finite state- and action-spaces, discrete-
tions with the environment. Several years ago time models in which the full description of the state
Markovian decision problems (MDPs) were pro- was available. In many real-life problems, however,
posed as the model for the analysis of RL(Andreae, the state- and action-spaces are infinite (but see
1969; Witten, 1977; Watkins, 1989),and since then a (Barto, 1978) for a discussion), usually non-discrete,
mathematically well-founded theory has been con- time is continuous and the system’s state is not fully
structed for a large class of RL algorithms. These known (the state is only partially observed). Al-
algorithms are based on two basic dynamic-program- though these interesting, yet theoretically more dif-
ming methods, namely the value- and policy-itera- ficult cases were investigated by many researchers

(see e.g.Littman, Cassandra, & Kaelbing, 1995;
Singh, Jaakkola, & Jordan, 1995), no complete and*Corresponding author. Tel.:136-1-463-3515; fax:136-1-
theoretically sound solution has been found to date463-3490.

¨E-mail address: lorincz@inf.elte.hu(A. Lorincz). that is computationally tractable for large problems.
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If the system’s state is only partially observable, the ent from most of the techniques in the RL
application of such general learning algorithms be- literature, where the task has a discrete action
comes increasingly difficult(Littman, 1996). space, and the objective is to learn a good

Another problem of RL is the separation of solution under the assumption that the task dy-
learning the value function (e.g. state value function) namics are static.
from the adaptation of the dynamics. As an illustra- 2. The framework may promote planning abilities.
tion, consider a robotic arm which has to lift a box to The following analogy is given to explain the
a given height. The initial and final states are given, motivation: Optimization of state-dependent ac-
but the weight of the box is unknown. The problem tion selection can be interpreted as ahabit,
is that the estimation of the value function depends conditioned reflex or shaped behavior. In contrast,
on the weight. A human easily adapts to the new the selection of a desired next state in goal-
situation, but most reinforcement learning methods oriented problemswithout explicit references to
re-learn the value function for every new box or, control actions seems more adequate for planning
alternatively, must include the mass as a parameter purposes.
into the learning process and need at least an 3. The framework does not compromise attractive
approximate mass value as input. In turn, either properties of RL, such as delayed reinforcement.
re-learning or an increase of the dimensionality of
the problem would be necessary for most RL meth- The paper is organized as follows. A short theoret-
ods. If we were able to execute actions by using an ical overview is given in Section 2. The descriptions
approximation of the correct value function (e.g., of MDP and RL are followed by the definition of
because the weight has changed), then the re-learnevent-learning in Section 3. Section 4 describes the
process could be postponed or avoided. Adaptation (non-Markovian) robust policy heuristics (RPH) that
to the correct dynamicsduring task execution im- applies the Static and Dynamic State (SDS) feedback1proves the chances of success. Such an algorithmcontroller. In Section 5, properties of event-learning
could be insensitive to the unmodeled perturbations are discussed, with computational demonstrations
of the dynamics of the system. partially outside the realm of the theory. Conclusions

In this article we introduce a new RL algorithm are drawn in Section 6. Some possible extensions of
called event-learning which deals with the said event-learning are also listed in this last section.
problems. In the ordinary settings, in each state an Mathematical details are presented in Appendices
action (behavior) is selected, and our goal is to A–C.
optimize this selection. In the new setting, in a given
state a desired new state is selected, then a separate
routine determines the control action that may or
may not reach the desired state. 2 . An overview of reinforcement learning

One of our motivations to explore event-learning
comes from our desire to develop an RL framework, In this section we give a short overview of the
which: Reinforcement Learning Problem. In one well-

studied setting (see e.g.Sutton & Barto, 1998) the
1. Is capable of controlling real-world tasks that are agent maximizesthe expected discounted reward, i.e.

` tdifficult for standard RL techniques, tasks with o g r , where r is the immediate reward at time0 t t

incomplete state observation and continuous ac- stept, andg [ [0, 1] is the discount factor. If this
tion spaces, where control must be stable despite maximization is made over a discrete-time, finite-
of the perturbed system dynamics. This is differ- state, finite-action environment, the theory of Marko-

vian Decision Problems can be applied as the
underlying mathematical model. A finite MDP is1We distinguish learning and adaptation. Learning concerns the
defined by the 4-tuple (6, !, p, r), where6 is aimprovement of the ratio of successful trials over unsuccessful
finite set of states,! is a finite set of actions,p(s, a,ones given the success or failure of the individual trials. In

contrast, adaptation is awithin trial fast process. s9) is the probability of getting tos9 when taking
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action a in state s, and r(s, a, s9) is the expected can be defined as well. One example is the state–
immediate reward of this transition. action-value function:

The task of the learning agent is to find a behavior `

p t(policy) that yields the most cumulated reward. In Q (x, a)5E O g r s , a , s us 5 x, a 5 a ,s dF Gp t t t11 0 0
t50the usual formulation, the policy is described by a

probability distribution functionp : 6 3! → R that (3)
determines the probability of each action in each

pfor all x [6 and a [!. Q (x, a) has the meaningstate. A policy p is optimal under theexpected
‘the expected cumulated discounted reward of takingdiscounted total reward criterion if, with respect to
actiona in statex and then following policyp.’ Thethe space of all possible policies,p results in a
state–action value function is especially useful, sincemaximum of expected discounted total reward for all

2 it can be used for control without the need ofstates.
building a model of the environment (i.e. there is noThe class of RL algorithms of our interest are
need to estimate the transition probabilities), whichvariants of the value-iteration method: these algo-
may prove to be advantageous in many applications.rithms gradually improve an estimate of the optimal
Clearly, the state–action-value function can be ex-value function via learning from interactions with the
pressed in terms ofV :environment. The state-value function of a policyp

in state x is defined as the expected discounted p pQ (x, a)5O p(x, a, y) r(x, a, y)1gV (y) , (4)s dcumulated reward that can be gained by starting from y

statex and following policyp :
p pwhile the reformulation ofV in terms ofQ is the

` following:
p tV (x)5E O g r s , a , s us 5 x , (1)s dF Gp t t t11 0

t50 p pV (x)5 O p(x, a)Q (x, a). (5)
a[A(x)

where E denotes expected value under policyp.p

The state-value function can be expressed recursivelyCombining these two equations, a recursive equation
pby for Q appears, which is the base of applying a

value-iteration algorithm:
pV (x)5 O p(x, a)O p(x, a, y) r(x, a, y)s

pya[A(x) Q (x, a)5O p(x, a, y) r(x, a, y)Sy
p

1gV (y) (2)d
p

1g O p(y, v) Q (y, v) . (6)D
v[A( y)for all statesx [6, where Pr(a 5 aus )5p(s , a),t t t

Pr(s 5 yus , a )5 p(s , a , y) (t 50, 1, 2,...), andt11 t t t t On-line history using policyp(s, a) can be seen as a
A(x),! is the set of admissible actions in statex. sampling of the probabilities, so Eq. (6) can be used

It is well known that there is a unique optimal to compute the value functions directly, without
value function, whereas there may be many optimal estimating the transition probabilities, e.g. by the
policies, e.g. by symmetry reasons. For a review on following update rule(Rummery & Niranjan, 1996;
policy evaluation and policy improvement, see, e.g., Sutton, 1996):
(Bertsekas & Tsitsiklis, 1996; Sutton & Barto,

p pQ s , a 5 12a s , a Q s , as d s s dd s d1998). t11 t t t t t t t t
p

pBesidesV , some other types of value functions 1a s , a r 1gQ s , a , (7)s ds d s dt t t t t t11 t11

wherer is the experienced reward at timet, actionst

are selected according to policyp(s, a) and the2Note that in most cases it suffices to maximize the cumulative
learning ratesa (s , a )> 0 satisfy the usual Rob-t t treward without identifying an optimal policy for the whole state
bins–Monro type conditions. For example, one mightspace, since there may be regions of the state space that the agent

1
]]never visits. set a (s, a)5 where n (s, a)5 11C s 5 s,ht t in (s, a)t
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3a 5 aui 5 0 . . .t , but often in practicea (s, a)5 forms well at least locally, i.e. for desired states thatji t

const is employed which improves adaptation but no are in the neighborhood ofx (if such a neighborhood
longer ensures convergence. The update is called is defined).
SARSA update because it is using experienced Note that from the point of view of the policyp ,E

state(t)–action(t)–reward(t)–state(t11)–action(t1 the output of the controller can be seen as a part of
1) tuples for evaluation. If policyp visits every the environment, similarly to the transition prob-
states infinitely often, this algorithm is guaranteed to abilitiesp(x, a, y).

dconverge with probability one to the optimal value The pair (x, y ) is called the desiredevent (hence
function (Singh, Jaakkola, & Littman, 2000).In the the nameevent-learning or event-learning). In gener-
simplest case,́ -greedy policy is applied. In statex, al, any ordered pair of two states can be viewed as
this policy selects the action with highest value with an event. Practically, an event occurs if it is made up
probability 12´ and a random action with prob- by two consecutive states.
ability ´. The ´-greedy policy attains a reasonable The algorithm of event-learning can be scheduled
compromise between theexploitation of existing as follows. For a given initial states select a desired1

dknowledge and the need forexploration. For a states and then pass the formed desired event to the1

detailed description see, e.g., (Sutton & Barto, controller. The controller selects an appropriate
1998). action, then this action results in the immediate

reward r and a new states after the interaction1 2

with the environment. Analogously to the state- and
state–action-values, we can define the value of an3 . Event-learning
event as the expected discounted total reward of the

d don-line processs , s , r , . . . , s , s , r , . . . startingBelow we introduceevent-learning, where in state 1 1 1 t t t
dd from (x, y ):x a new desired statey is selected (instead of

selecting an action). This selection is also based on a `

p d t d dvalue function, theevent-value function (to be de- E sx, y d5E O g r s , a , s us 5 x, s 5 y .s dF Gp t t t11 0 1
t50fined later in this section). Upon selecting a desired

state, we need to solve the problem of ‘getting there.’ (9)
We will pass this problem to a lower-level controller,

p ,pE ANote that we should writeE . However, accord-which operates independently of the upper-level
ing to (8), p andp determine a policyp, so theprocess. This decision-decomposition can be formu- E A

pnotation E is kept. Using (8) and (9), the eventlated more formally: Policyp is decomposed into
value function can also be expressed in terms ofV :event policy p : 6 36 → R and controller policyE

d
p : 6 36 3! → R, where p (x, y ) is the dis- p d dA E

d E sx, y d5O p sx, y , ad O p(x, a, y)(r(x, a, y)Atribution of selectingy as new desired state inx, a y
dand similarly, p (x, y , a) is the distribution of pA 1gV (y)), (10)

selecting control actiona in statex in order to get to
dy (a may or may not be able to realize this transfer). and conversely,

Thenp(x, a) can be computed by marginalizing over
d p d p dy : V (x)5O p sx, y d E sx, y d. (11)E

dy
d d

p(x, a)5O p sx, y d p sx, y , ad. (8)E A
dy From the last two equations the recursive formula:

p d dIn general, the policyp realized by the sub-levelA E sx, y d5O p sx, y , ad O p(x, a, y) r(x, a, y)d A Sa ycontroller cannot always transfer the agent toy .
However, our aim is to find a controller that per- d p d

1g O p sy, z d E sy, z d (12)E D
dz

3ChHj denotes the cardinality of the setH. can be derived. Eq. (12) can be simplified con-
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d T able 1siderably. Denote byp(yux, y ) the probability that
d Pseudo-code for the event learning algorithmgiven the initial statex and goal statey , the

Initializecontroller and the environment drive the system to
t[0;statey in one step. Clearly,
s [arbitrary, r [0;0 0

d d Main loopp yux, y 5O p sx, y , ad p(x, a, y). (13)s d A repeata

Observes , r ;d t t
dFurthermore, denote byr(x, y ) the expected imme- Selects ´-greedily w.r.t.E (., .);t11 td

ddiate reward for the event (x, y ), i.e., Selecta according to distributionp (s , s , .)t A t t11

take actiona ;td drsx, y d5OO p sx, y , ad p(x, a, y) r(x, a, y). (14) % UpdateA
d d da y E s , s [ 12a E s , s 1a r 1gE s , s ;s d s d s s dds dt11 t21 t t t t21 t t t t t t11

t[t 1 1;Using these notations, Eq. (12) can be written in the
End of loop

following form:

p d dE sx, y d5 rsx, y d
dlems usually operate on a desiredvelocity (v )

d d p d
1g O p yux, y O p sy, z d E sy, z d . (15)s d E instead of a desired state. However, event-learningS Dy dz requires controllers which operate on discrete time

d d and state space and use state-desired state pairsNote that in an on-line processs , s , r , . . . , s , s ,1 1 1 t t
4instead of state-desired velocity pairs. For the saker , . . . the state s is sampled from distributiont t11

d of simplicity, we assume that time is discretizedp .us , s , thus, the following SARSA-like values dt t

uniformly into Dt intervals. As it is well known, forapproximation can be used:
d dx(t 1Dt ) 2 x(t ) y (t 1Dt ) 2 x(t )

]]] ~ ]]]]smallDt, ¯ x(t), so ¯ v (t).
Dt Dtd dE s , s 5 12a E s , ss d s ds d Thus, selecting a desired state in the discretizedt11 t t11 t t t t11

d system can be accomplished by selecting a desired1a r 1gE s , s . (16)s s ddt t t t11 t12
velocity in the continuous one:

The resulting algorithm is shown inTable 1.
dy 2 xWe would like to emphasize that the value of d S D˜ ]]p sx, y , ad[p x, , a , (17)d A A Dtevent (x, y ) depends (implicitly) on the controller.

dFor example, in statex the value ofy may be high, ˜wherep is the controller of the continuous system,Abut if the controller is unable to get there, then the d˜i.e. p (x, v , a) is the probability of selecting actiond d Avalue oftrying to get toy , i.e. E(x, y ), will be low. da in statex, when the desired velocity isv .
As a consequence, it suffices to store event-values

only for events (x, y) such that statey is ‘close’ to x
4 .1. Continuous dynamical systems(it is achievable in one step from x), and thus

savings in storage space are possible.
nx: R → D ,R is a (first order) continuous dy-To complete the algorithm, we have to specify a

d namical system (CDS), ifx(t) is continuously dif-controller p (x, y , a). This is the topic of the nextA
~ferentiable w.r.t.t, its derivative denoted byx(t), andsection.

it satisfies the differential equation:

~x(t)5 f(x(t)) (18)
4 . Robust policy heuristics

with some continuousf. (The possibility that the
As was mentioned in Section 1, the time and state system could be controlled is not mentioned here.)

description of many real-life problems are continu-
ous. We will use bold letters to emphasize that the 4It is assumed implicitly that the discretization is well con-
appropriate variables are vectors of real values. ditioned, i.e. we are not concerned with the validity of the
Moreover, the continuous controllers in such prob- discretization.
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From now on, dependence ont will not be explicitly The approximate inverse dynamics is allowed to be
denoted. very coarse, since it can be corrected by an error

The dynamics of a physical system can typically term defined below. The resulting controller is called
7be described by an equation of type (18). As a SDS controller:

consequence, many important real-life problems can
be modelled by continuous dynamical systems. t

Below we examine the controllability of such a d dˆa sx, v d[Fsx, v d1L E w(t) dt, (22)SDSsystem.
0We assume that the dynamics of the system is

5given by
where

~x 5P(x) a1 q(x), (19)

dn ˆ ˆ ~w(t)5F(x(t), v (t))2F(x(t), x(t)) (23)where x[D ,R is called the state vector of the
msystem,a[R is the control signal, and the continu-

n n3mous mappingsq(x)[R and P(x)[R character- is the correction term, andL. 0 is theamplification
ize the dynamics of the system. We assume thatD is or gain of the feedback.
compact and simply connected, andP(x) is invertible The most important property of the SDS controller
in the generalized sense, i.e. there exists a matrix is that it can neglect the effects of the perturbation of
A(x) for which P(x) A(x) P(x)5P(x). We also assume ´ ¨the (inverse) dynamics(Szepesvari & Lorincz, 1996)
that both matrix fieldsP(x) and A(x) are differenti- (e.g. noise). For this reason, it can be calledrobust
able w.r.t.x. (Isidori, 1989).

Note that SDS is a deterministic controller, i.e. the
4 .2. The SDS controller distribution of the action values is given by

For the CDS described in Eq. (19), the inverse
d6 1 if a5 a sx, v d,SDS d SDSdynamics is given by p̃ sx, v , ad5 (24)HA 0 otherwise.

~ ~F(x, x )5A(x) x 1 b(x), (20)

The obtained controller can be easily inserted intowhereA(x) is the (generalized) inverse ofP(x), and
the general event-learning scheme.b(x)5 2A(x)q(x). The inverse dynamics solves the

d According to the SDS theory (see Theorem 2 incontrol problem:F(x, v ) gives the control action
d ´ ¨Appendix A and (Szepesvari, Cimmer, & Lorincz,that realizes desired velocityv in statex.

´ ¨1997; Szepesvari & Lorincz, 1996)), only qualitativeHowever, findingF is usually a difficult (often
ˆproperness is required forF (cf. the sign-propernessintractable) problem, so we would like to use an

condition). In general, such an approximation is easyˆeasy-to-compute approximationF instead. We as-
~to construct, e.g. simply by exploration: The (x, a, x )sume that the approximate inverse dynamics has the

triplets can be tabulated for severalx, a pairs, andform
then this table can be used to search (truncate to or

ˆ ˆ ˆ~ ~F(x, x )5A(x) x 1 b(x). (21) interpolate between) controla according to a given
dpair (x, v ).

5It is well known that although the given dynamical system is
of first order, this is not a real restriction, because dynamics of any
order can be rewritten in this form (by extending the state space

(n) 7~ ¨with the higher order derivativesx, x, . . . , x ). A short description of the SDS control scheme is given in
6Note that the inverse dynamics is not necessarily unique:F9(x, Appendix A. Detailed description of the motivation and properties

~ ~ ´x )5F(x, x )1 (I2A(x) P(x)) y(x,t) is also a valid inverse dy- of the SDS controller can be found in(Szepesvari et al., 1997;
´ ¨ ¨namics for arbitraryy(.,.). Learning of the inverse dynamics may Szepesvari & Lorincz, 1996; Lorincz et al., 2001)and in our

¨be performed as suggested in(Fomin et al., 1997). technical report(Lorincz et al., 2002).
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4 .3. Robust policy heuristics: applying SDS to dynamics can be accomplished simultaneously under
event-learning the condition that the perfect inverse dynamics can

be learnt. This is not the general case, however, and
Theorem 2 ensures stability only for continuous a stronger theorem with approximate learning of the

dsystems and fixedv 5v(x). When it is applied to our inverse dynamics would be desired. Finally, we note
event-learning algorithm, neither condition holds: the that RPH is non-Markovian, because the controller

dsystem is discretized and the desired velocityv is relies heavily on history.
determined by policyp , which depends onE , so it The next section presents computer simulationsE t

varies with time. that demonstrate the specific properties of event-
Though, we may expect that the controller learning versus another (the SARSA) RL algorithm.

SDS d SDS d˜p sx, y , ad[p sx, v , ad (25)A A

5 . Computational demonstrations
preserves the stability and robustness of the original
SDS controller. The resulting controller is called 5 .1. The rotational inverted pendulum
Robust Policy Heuristics. The algorithm of event-
learning with Robust Policy Heuristics is shown in For the computer simulations the two-segment
Table 2. pendulum problem(Aamodt, 1997)was used. The

Note that in the discretized case, the output of the pendulum is shown inFig. 1. It has two links, a
controller is the integral of the correction term in Eq. horizontal one (horizontal angle isa ), a coupled1

8(22), which can be integrated easily but the update vertical one (vertical angle isa ) and a motor that is2

occurs only at the start of a new event. Note also that able to rotate both directions. The state of the
~ ~the controller provides continuous (non-discrete) pendulum is given bya , a , a and a . For the1 2 1 2

output, but the approximate inverse dynamics may equations of the dynamics see Appendix B. This
still have a finite action set. particular task was chosen to demonstrate the

In the Appendices we show that the learning of the strength of our method in solving real-world prob-
event-value function and the learning of the inverse lems with noisy state-quantization continuous action

spaces, and severely perturbed dynamics.
The task of the learning agent was to bring up the

T able 2 second link into its unstable equilibrium state and
Pseudo-code for the event-learning algorithm with RPH balance it there. To this end, it can express torque on
Initialize the pendulum by using the motor. State variables
i[0; were perturbed by small noise and were discretized
s [arbitrary, r [0;0 0 (seeTable 3). The controller ‘sensed’ only the code
int w[0;

] of the discretized state space. Discretization wasMain loop
uneven, a finer discretization was used around therepeat

Observes , r ; bottom and the top positions of the vertical link.i i
dSelects ´-greedily w.r.t.E ;i11 i Different discretizations were utilized, one example

dˆa [F s ,s 1L? int w;s di i i11 ] can be seen inFig. 2, where the division lines
take actiona ;i correspond to the borders of discretized states. The% Update

dˆ ˆ angle and the angular momentum of the horizontalint w[int w1Dt F s , s 2F s , s ;s ds d s di21 i i21 i] ]d d dE s , s [ 12a E s , s 1a r 1gE s , s ;s d s d s s dds d link (see Fig. 1) are relatively less important fromi11 i21 i i i i21 i i i i i i11

i[i 11; the point of view of motion and optimization.
end of loop Dependence of the value function versus these

variables is weak and is not shown in the figure.
8 t1Dt The controller had two actions: (21.5, 1 1.5) inIn the interval [t, t 1Dt] the change ise w(t) dt 5w(t) Dt,t

Newton meter [N m] units. An episode was consid-~becausew remains constant in this interval (x is also measured at
discrete time steps only). ered successful if the pendulum was kept around its
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Fig. 1. The rotational inverted pendulum. Upper subfigure: the pendulum; lower subfigures: a successful episode shown in three consecutive
series.

T able 3
Parameters of the computer simulations

Name of parameter Value Notation

SDS feedback gain 0.5–4 L

~Resolution of the discretization ofa 18 (5–21) parts2

Number of control actions 2
Control actions (without SDS) 61.5 N m
Average frequency of random control action 2 Hz
Mass of horizontal link 0.82 kg m1

Mass of vertical link 0.43 kg m2

Length of horizontal link 0.35 m l1

Length of vertical link 0.3 m l2
frictFriction 0.005 K

Prescribed Standing Time 25 s
Eligibility parameter 0.95
Discount factor 0.98 g

Learning rate 0.01 a

ˆtop position for a prescribed standing time (25 s). In table thus needed2( 6 ? ! ) entries. To getF(x,u u u u
d ¯all of the experiments the pendulum was started from v ), we have searched an entry (x, v , a ) withi i

d ¯its lowest position with zero angular velocities. A minimumiv 2v i, and returneda . If no such entryi i

reward of 0 was given in each time step if anglea was found, then a random action was returned. The2

was in6108 proximity of p, otherwise penalty21 obtained inverse dynamics is very coarse, and it may
was incurred. even violate the sign-properness condition during

For details about the applied approximate inverse learning. The tabulation was made in parallel with
dynamics see Appendix B. Technically, we have the learning. This did not corrupt the results, since a

9tabulated state–action–velocity triplets. However, to good approximation was built up fast (much faster
save space, for a discretized state and action we have than the learning proceeded). This event selection
stored only the average of the resulting velocities method implies that since the desired event could

¯(also computed in the discretized state space). The only be a member of the seth(x, v ), i 51, . . . ,! j,u ui

only ! event values were stored for each state.u u
Thus, the total storage space needed by the algorithm

9 d d was also2( 6 ? ! ).u u u uIt was shown in Section 4 thatv can be used instead ofy .
This was utilized in the implementation of event selection as well. The performance of our event-learning1RPH
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Fig. 2. Value function and an optimized trajectory. The vertical angle and vertical angular momentum are shown. (The value function
depends to a much smaller extent on the horizontal angle and the horizontal angular momentum.) Lines signal the borders of the discretized
domains of the state space. Values are gray level coded. Lighter colors denote higher values. A trajectory starting from the lowest position
with zero velocity is depicted by dots.

algorithm was compared to the performance of not change significantly any more, and it becomes
SARSA. Eligibility traces were used in both algo- near-optimal (in fact, a few hundred episodes would
rithms to accelerate learning. The same parameters have been satisfactory).
(learning rate, resolution of discretization, reward, The obtained value function cannot be graphed
eligibility decay, discount factor) were used for both directly, since a state of the pendulum is a four-
algorithms. The parameters were taken from dimensional vector, so we would need 41411
(Aamodt, 1997),and can be considered (near) opti- dimensions to plot the event-value function. Thus,
mal for the SARSA implementation (which was also we plottedV(x) instead ofE(x,y) with the two most

~taken from there). It should be noted, however, that significant state coordinates,a anda only. Values2 2

event learning—via the backing SDS controller—has along the other two coordinates have been averaged.
a coarse model. The main point of the ‘comparisons’ The resulting value function is shown inFig. 2.
is that SARSA cannot cope with many real-world The trajectory of a successful trial is also depicted in
tasks because it assumes a discrete action space. In the figure. It can be seen that the agent is not able to
addition, increasing the resolution of that action ‘climb up’ directly to the peak of the value function,
space is problematic, because it increases the size of but it has to reach it on a spiral trajectory instead.
the table ofQ-values that need to be learned—unlike (Note that this spiral is closely related to the eigen-
in event-learning using RPH. Note also, that turning oscillation of the pendulum with increasing am-
RPH off, the event-learning algorithm assumes a plitude: the weaker the controller the more pro-
SARSA-like form (see Eq. (16)). nounced the connection.)

5 .2. Experiments 5 .2.2. Comparison with SARSA
In this experiment we compared the learning speed

5 .2.1. The event-value function of our algorithm and SARSA. We tested the two
Our algorithm was allowed to learn for 10,000 methods on the basic task: swinging up the pen-

episodes to make sure that the value function does dulum to the the upper equilibrium state. Note, that
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T able 4 with 3 to 10 actions asymptotically outperform
aControl actions available in the simulations event-learning.)

Number of control Event-learning with RPH unifies the advantages of
actions these two extremities: the robust controller can
2 61.5 achieve a good approximation and makes use of an
4 60.5 61.5 approximate inverse dynamics with only two base
6 60.5 61.5 62.5 actions, and that ensures small look-up table and fast
8 60.5 61.0 61.5 62.5

learning. The 3-action SARSA performs particularly10 60.5 61.0 61.5 62.0 62.5
well, since it has the opportunity to do nothing,3 0 61.5
which proves to be very useful in this balancing task.a Values are given in Newton meter [N m].

5 .2.3. Distribution of completion time in a
event-learning with RPH can select a continuous perturbed environment
spectrum of actions (although based on two values), The next set of simulations concerned the dis-
not just a few. To make this comparison ‘fair’, we tribution of task execution time in a perturbed
tested SARSA also with 2, 3, 4, 6, 8 and 10 actions. environment. Both algorithms were trained with
The control action values are shown inTable 4. m 5 0.43 kg. Before testing, we changed the mass2

Results are shown inFig. 3. As it can be seen, tom 5 0.53 kg and tested RPH and SARSA on this2

event-learning1RPH learns much faster than new environment. No learning was allowed for this
SARSA. If SARSA has only two actions, it performs modified mass.Fig. 4 shows the results for this,
badly, because it can not approximate the true imprecision’, same for both types of computer runs.
dynamics precisely enough. If it is allowed to use 10 The points for the histogram were chosen in an
actions, then the eventual performance is much equidistant manner. In turn, ticks refer to differing
improved, but learning is very slow because of the time intervals due to the log scale. It can be seen that
large size of the table of theQ-values. The figures in the case of SARSA, large deviations are possible,
demonstrate that contrary to SARSA, our algorithm whereas our algorithm is able to control the system
is capable of fast learning and maintaining a good in a robust manner.
asymptotic performance (Note that SARSA variants In the figure it can also be seen that strong

 

Fig. 3. Performance of SARSA and event-learning. The cumulative elapsed times for SARSA with 2, 3, 4, 6, 8 and 10 actions and
event-learning. Smaller tangent slopes mean shorter episode times.
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Fig. 4. Histograms of task completion time. Thick solid line: SARSA. Dotted line: event-learning with RPH (L5 1.0). Thin solid line:
event-learning with RPH (L5 2.0).

feedback may also cause problems:L5 1.0 results tions. The figure shows the average task completion
are distinctly better than results for theL5 2.0 case. time for the two methods as a function of the mass
Coarse discretization which is attractive considering change. The horizontal axis of the figure shows the
the need for infrequent decision making (see Section change of the mass of the second link (in kilograms).
5.2.5) can be limiting if perturbations are strong. With lighter (heavier) mass, the state–action policy
Finer time resolution is required under this condition. finishes the task sooner (later). This is the straight-

10Effects of delayed feedback with the SDS control- forward consequence of the lack of robust control.
´ler has been studied elsewhere(Szepesvari & Beyond about 0.1 kg (approx. a 25%) mass increase

¨Lorincz, 1996). sharp deterioration takes place and performance of
the state–action policy drops suddenly.

5 .2.4. Change of dynamics In contrast, event-learning with RPH starts to
Our most important question is: how large change deteriorate only at around doubled mass. Small

in the dynamics can be handled by our method? To changes of the mass do not influence the task
examine this, the two-segment pendulum was opti- completion time significantly. One might say that the
mized for a given mass. In the optimization problem perturbations to the mass of one of the links are not
we used a coarse discretization in state space. After as crucial as e.g. the length of the links—but both
switching learning off, cases with different masses modify the optimal trajectory in state space. Theoret-
were tested. The described RPH method was used to ical considerations and computer simulations on this

¨compensate for the perturbation. matter can be found in the literature (Lorincz,
´ ´Fig. 5 depicts the results of the computer simula- Hevizi, & Szepresvari, 2001). In turn, RPH may be

suboptimal, but it can alleviate task execution and
may not spoil optimization.

10Note that the term ‘delayed feedback’ concerns error com-
5 .2.5. Frequency of decision makingpensation of the controller and has no connection to delayed

rewards. As it was already mentioned, RPH makes decision
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Fig. 5. Task completion time as a function of change of mass. Thick solid line: state–action controller pre-trained by SARSA and without
RPH. Thin dotted line: event-learning with RPH (L5 1).

only if the system reaches a new state. It is obvious 6). Note that this saving was achieved by optimizing
that eased constraints on frequent decisions can have only for a single state variable.
advantages. The last figure depicts the average
number of interactions with the system as a function
of the number of discretization points (horizontal 6 . Conclusions and remarks
axis), i.e. the coarseness of the discretization. When
discretization is too coarse then it corresponds to We have introduced the concept of event value
large and uneven perturbations. For fine discretiza- function and its learning method, event-learning. The
tions the number of interactions grows because of the method supports the usage of a robust controller. The
increased resolution. RPH is sensitive for delayed working domain of the optimized controller can be

´ ¨feedback (Szepesvari & Lorincz, 1996)and the extended to strongly perturbed conditions. One dis-
number of interactions grows for very coarse dis- advantage of the method is that the robust controller
cretization as well. There is a minimum in between, is sub-optimal. This fact may be compensated by the
which is optimal if computational power or com- fast adaptation of the controller and the higher
munication bandwidth are costly, and in turn, the chance to achieve the goal in unexperienced situa-
minimization of interaction frequency is desired. tions.

In contrast to event-learning1RPH, SARSA (and It is important to note that learning time may
other traditional RL algorithms) has to make deci- increase exponentially with the number of degrees of
sions on the next action in every time step. For 5 ms freedom. In turn, it is essential to keep the number of
time step, this gives a 200 decision/s frequency, i.e. degrees of freedom as low as possible, e.g. by
about 1000 decisions in an average 5 s long episode. considering a subset of state descriptors as noise, or
On the other hand, event-learning1RPH results in a by excluding some parameters from the optimization
minimum interaction number which is about one fifth problem. The significance of robust controllers lies
of the value that was achieved by SARSA (seeFig. in the fact that they are able to deal with such
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Fig. 6. Average number of interactions between the agent and the system. The interaction depends on the resolution in the case of
event-learning with RPH. Low resolution gives rise to uncertainty about the actual position, motion is more erratic, and the number of
interactions (i.e. the number of switches between events) increases. (The number of interactions was 1332 in the experiment when the
number of discretization intervals was 3.) High resolution provides smooth motion, but the number of switches between modules increases.
As a function of resolution there is a region where the number of interactions per episode is low.

situations, and thus ease the curse of dimensionality neither the existence of an inverse dynamics, nor
problem and accelerate learning. The gain in learning an underlying continuous dynamical system, it
time may compensate the temporally sub-optimal can be used together with a wide range of
nature of the actual solution. controllers, including state–action policies.

We list a few properties of RPH and event-learn- 4. Event-learning can be written in analogous forms
ing: to value iteration methods like SARSA, and thus

convergence theorems of RL can be established
1. Storing the event-value function (when values are for this formulation as well.

2tabulated) requires theoretically6 storage 5. Large savings may arise in the number of deci-u u
space. In practice, however, this can be reduced if sion makings in the event-learning formulation.
! , 6 (see Section 3 and Section 5.1). The The main reason for this is that decision makingu u u u
theoretical lower bound on tabulation size is equal is necessary only if the system reports that its

2to minh 6 , ! ? 6 j for event-learning. This state has changed.u u u u u u
value may be significantly lower if not all state– 6. Despite the fact that event-learning works with
state pairs can form predecessor–successor state– finite states, finite action space (continuously
state pairs. modified by RPH) and discrete time, RL control

2. The robust controller is an attractive solution to augmented with the robust controller extends the
reduce state space and, in turn, to reduce the domain of applicability of RL to continuous tasks.
search space: it is able to compensate for the
coarse knowledge of state variables (or even the In the event-learning algorithm, the controller is
lack of information about some of them). given the task to drive the system from a statex to

d3. Learning of the event-value function requires an other statey . This can be considered as setting a
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subgoal. If the controller itself is also substituted by controller provides a tractable solution to the robust
an RL algorithm, then a two-level hierarchical RL SFT problem. However, in order to define this
algorithm is obtained. The state description of the controller, several concepts need to be introduced.
top level may be quite coarse, with a finer resolution
on the second level. The potentials of this approach  A.2. Feedforward and feedback controllers
are promising, but have not been studied yet, and it
is an open issue how to break a large problem into a If planning and control are interleaved, i.e. at each
hierarchical set of events. To our best knowledge, timet the upgradedinstantaneous (state) information
event-learning is unique from the point of view that is used to generate a new control signal, then the
it works with states that will (may) happen, and thus system will be called aclosed-loop system. If the
provides a natural framework for planning in modu- value of the control at timet depends only on the
lar hierarchical decision making problems. state of the plant at the same time, the control is said

to be in astatic state feedback control mode and the
controller is called afeedforward controller (FFC).
Assume that the planned motion and the actual
motion are different. Then the difference, i.e. theA  ppendix A. The SDS control scheme
error, can be used to generate an error-compensating
signal. Generation of the error-compensating signal

 A.1. Robust speed field tracking is the task of thefeedback controller (FBC). (Note
the ambiguous use of the term feedback.) The output

Finding an appropriate controller is closely related of the feedback controller should be integrated in
to the speed field tracking problem (SFT)(Hwang & order to recall previous errors and thus to develop a
Ahuja, 1992)described below: preventive compensatory control signal. This means

Consider the continuous dynamical system defined that a feedback controller appliesdynamic state
nin Section 4.1, and letv: D → R be a prescribed feedback, i.e. it is precisely thedynamics of the

speed field. Find a controller which can control the (compensatory) control signal that depends on the
system so that if it gets to statex, then the actual state of the plant as opposed to the case of static state

~speedx is close to the prescribed one (v(x)). The task feedback when the control signal itself depends on
~is calledrobust, if for a fixed´ . 0 iv(x(t))2x(t)i,´ the state of the plant. In other words, in the case of

for t . 0. dynamic state feedback the control signal is the
It is immediate that finding a robust controller for output of another dynamical system. If, however, one

a given deterministic policyp is in fact a robust views the problem from the aspect of the feedbackE

SFT problem. An analogous problem could be controller, its output may depend only on the error,
formulated for nondeterministic policies as well, but i.e. the feedback controller may itself be a feedfor-
this will not be discussed here. ward control system working on the error as the state

The planning abilities of SFT have been studied in input. From this viewpoint the task of the feedback
the neurocontrol literature. Spreading activation type and that of the feedforward controller are similar:
SFT algorithms have been designed(Lei, 1990; both should mapstate values to control values. In
Keymeulen & Decuyper, 1992; Connolly & Grupen, the following we use the term feedback control to
1993; Glausius, Komoda, & Gielen, 1995),and a refer to dynamic state feedback control.

´unified framework has been provided(Szepesvari & Now, we again consider feedback control: the
¨ ´Lorincz, 1998; Fomin, Rozgonyi, Szepesvari, & advantage of the extra FBC is that it allows the FFC
¨Lorincz, 1997).Planning and control can be unified to work with a broader range of problems since the

in a neural (distributed connectionist) framework FBC can compensate for errors. However, since
(Fomin et al., 1997)provided that SFT can be made feedback is working on the basis of a possible error,
robust against perturbations and changes in the such an error first has to develop before any compen-
system’s dynamics. satory action can be made, i.e. feedback control is

As the below cited theorems show, the SDS somewhat delayed.
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ˆThe controller that realizes the approximate in- 3.the speed field v(x), F(x, v(x)) and A(x) are
verse dynamics plays a dual role: it computes the uniformly bounded and have uniformly bounded
feedforward control signal that would move the derivatives w.r.t. x over D,
system into the desired direction and, in case of
error, the very same controller also computes the

then for all L.0 the error of tracking speed field
(feedback) compensatory signal. This compound ~v(x), e(x)5v(x)2x is EUB. The eventual bound b of
controller will be called Static and Dynamic State

the tracking error can be made arbitrarily small,
Feedback Controller (SDS Feedback Controller). The

more specifically b 52(1 /L) and the necessary time
equations describing the SDS controller with feedfor-

for reaching iei< b is proportional to L.dˆ ˆward controllerF(x, v ), feedback controllerF(x,
d ˆ ~v )2F(x, x ) and feedback gainL are given in the

´The proof can be found e.g. in (Szepesvari &article (Eq. (22)).
¨Lorincz, 1996). We note here that the joint formula-

tion of reinforcement learning and CDS has been in
 A.3. The stability theorem the focus of research interest(Doya, 1996; ten Hagen

¨& Krose, 1998; Doya, 2000; ten Haagen, 2001).
To establish the theorem, we need the following These works, however, do not use our event based

definition. formulation but treat the problem on different
grounds.

Definition 1. Consider the autonomous system

~x 5 f(x), (A.1)

A ppendix B. The dynamics of the rotationalnwhere x[D, D ,R is compact, andf is a vector inverted pendulum and the approximate inverse
valued smooth function overD. The solution of Eq. dynamics
(A.1) corresponding to the initial conditionx(0)5j,
is denoted byf(t; j ), (j [D). Let the output of  B.1. The dynamics of the rotational inverted
system (A.1) be pendulum

y5 h(x), Here we give the description of the CDS of the
pendulum. We refer to the notations of Section 4.1.mwhere y[R , m . 0 integer, andh is continuous. ~ ~x5 a , a , a , a , thus, the state space is 4-s dm 1 2 1 2Let i ? i denote an arbitrary norm overR and let A dimensional, andD 5 [2p, p ] 3 [2p, p ] 3 2V ,fm 1be an arbitrary subset ofR . We say that the output V 3 2V , V , where V and V are physicalg f g1 2 2 1 2of the above system iseventually uniformly bounded bounds on the corresponding angular velocities.

(EUB) w.r.t. the setA if there is a boundb . 0 and a Control may be applied only to the angular accelera-
numberT . 0 such that for each solutionf(t; j ) for tion of link 1.
which h(j )[ A it holds that ih(f(t; j ))i, b pro- Let the weight and length of linki be denoted by
vided thatt . T andf(t; j ) is defined fort. m and l , respectively (i 5 1, 2). Then the Lagran-i i

gian equation of motion is given by
Now we are able to cite the stability theorem.

2 ¨K 1K sin a K cosa a c1 2 2 4 2 1 1Theorem 2. Let the CDS given by Eq. (19) be 1F GF G F G¨K cosa K a c4 2 2 2 2controlled by equation system (22). If
aF G5 , (B.1)0ˆ ˆ ˆ~ ~1. F(x, x )5A(x) x 1 b(x),

T Tˆ2. A (x) A(x) and A(x) A(x) are uniformly positive
definite over D (‘sign-properness’ condition), and wherea is the applied control, and
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2 2K 5 (m 1m )l , respectively, where sina was replaced by 0 and1 1 2 1 2
2cos a was replaced by 1. In turn this 232 matrix2 2K 5m l ,2 2 2 is positive definite. Approximating the true matrixA

ˆ ˆ ˆby matrixA 5A(x ) at discretization pointx we haveK 5m l l ,4 2 1 2 ˆthat A is uniformly positive for every discretization.
K 5m l g,6 2 2 In turn, the sign-properness conditions of the SDS

2 frict controller are met.~ ~ ~ ~c 5 2K a sina 1K a a sin 2a 1K a ,s d1 4 2 2 2 1 2 2 1 1

2 frict~ ~c 5 21/2K a sin 2a 1K sina 1K a .s d2 2 1 2 6 2 2 2

A ppendix C. Convergence of learningThat is,

In what follows, we relate our formulation to2K 1K sin a K cosa1 2 2 4 2 traditional formulations of RL. To simplify matters,A(x)5F G
´we use the notation ofSzepesvari and LittmanK cosa K4 2 2

(1999).For or notational simplicity, vector quantities
and will not be distinguished by bold letters in this

section. The dynamic programming operatorT that
c1 maps value functions to value functions can beb(x)5 .F Gc written as2

21Consequently, P(x)5A (x) and q(x)5 2 TV5 ^ % r 1gV , (C.1)s d
21A (x) b(x) define the dynamics.

where
 B.2. The approximate inverse dynamics

^ 5max
a

When the state space of the system is discretized,
we have no access tox, only to the discretized state and
x̂. In the case of the pendulum, the approximate

d dˆ ˆ ˆinverse dynamicsFsx, v d5Fsx, v d satisfies the
% 5O p(x, a, y).conditions of the SDS stability theorem. y

Indeed, the only non-trivial condition is sign-prop-
Tˆ T has a unique fixed point, the optimal valueerness, i.e. the positive definiteness of matrixA A

T ˆ * *function, denoted byV , for which V 5 ^ % (r 1andA A. To prove this, we show that bothA andA
* *gV ) holds (known as Bellman equation forV ).are positive definite.

The optimal value function is unique. This functionThe trace and the determinant of matrixA can be
determines the maximum of the expected value ofestimated from below as
the long term cumulated discounted immediate re-

2 wards that can be collected starting from any givenK 1K sin a 1K $K 1K1 2 2 2 1 2

state. The max operation selects the optimal action.2 2 2 a5m l 1m l 1m l1 1 2 2 2 2 Now suppose that instead of action selection, a
desired speedv [ dX is selected, where dX denotes.0 (B.2)
differences between states. Computation of the dif-

and ference may be executable, i.e. for discrete positions.
In this case positions form a vector space and

2 2 2 2detA5K K 1K sin a 2K cos a differences belong to the same vector space. Alter-1 2 2 2 4 2

natively, the computation of the difference may not2 2 2 2 2 2 4 2
5m m l l 1m l l 1m l sin a1 2 1 2 2 1 2 2 2 2 be executable, like in the case of tabulated states

2 2 2 2 2 2
2m l l cos a >m m l l .0, (B.3) distinguished by indices. In both cases, the difference2 1 2 2 1 2 1 2



¨A. Lorincz et al. / Cognitive Systems Research 4 (2003) 319–337 335

will be called speed. Assume, that speeds are tic) mappings S and R, respectively, with probability
ˆmapped to actions by the use of a controllera 5F(x, one uniformly. If operators R are uniformlyt

v). In our formalism this means that the action Lipschitz-continuous with constant K, then
selection operator̂ is decomposed to a desired- R + S → R + S with probability one uniformly.t t

ˆspeed selection operator̂ and a controllerF.E

Consequently, The proof of this lemma is left for the reader.
Consider the Q-learning type algorithm (Eq. (7))

F̂TV5 ^ % (r 1gV )E in Fig. C.1.

5maxO p x, as
v y ˆset E , F arbitrarily0 0

ˆ5F(x, v), y r(x, a, y)1gV(y) .ds d repeat
selectv ´-greedily with respect toEt11 t

Note that the distribution of the successor states E (x , v )[(12a )E (x , v )t11 t t t t t t
depends on the controller. 1a (r 1gE(x , v ))t t t11 t11

ˆselect actiona [F (x , v )t11 t t11 t11
ˆDefinition 3. F: X 3dX → A is called the (exact) selectFt11

inverse dynamics of the system, if it maps the state take actiona
pair (s, v) to actiona so that taking actiona in states t[t 1 1
will move the system to states9 (v 5 s92 s). In this end of loop
case we shall say that the exact inverse dynamics
moves the system with speedv. Fig. C.1. Learning algorithm for speed value function.

ˆ ˆF FWe define the speed value functionE 5 % (r 1
In this section, we will show that this algorithm

gV ). For the optimal speed value function the
*converges toE under appropriate conditions.following Bellman-type equation holds:

Let the approximating operator sequenceT bet

F F defined as follows:* *E 5E 5 % r 1g ^ E . (C.2)s dE

T (E9, E)(x, v)[tNote that from the viewpoint of speed value learn-
ing, the control selection is the part of the environ- (12a ) E9(x, v)1a r 1g ^ E (y) if (x, v)5 (x , v ),s s d dt t t E t t

(C.3)ment. H
E9(x, v) otherwise,Speed is defined as the limit value of the differ-

ence between two states separated by small time
wherey is the state of the system after taking actioninterval divided by the duration of the time interval

ˆa 5F (x, v) in statex.when this duration tends to zero. In this section t

speed will mean the difference between two states
without making explicit reference to the time dura- Definition 5. T approximatesT at E with probabilityt
tion and the unit time. In turn, this formulation one uniformly overX, if for E 5 T (E , E) andt11 t t
includes the traditional formulation. In this section arbitrary E , E → TE uniformly over X.0 t
the speed value functionE(x, v)(5E(x, y)) will be
used withv 5 y 2 x. One may make the distinction

*Lemma 6. T approximates T at E with probabilitytbetween speed value functionE(x, v) and event value
one uniformly over X 3dX, if the following con-function E(x, y). For tabulated cases the two formu-
ditions hold:lations are equivalent. We will need the following

lemma.
ˆ1. the series of controllers F converges to the exactt

Lemma 4. Assume that the stochastic mappings S : inverse dynamics function with probability onet

Z →W and R : W → X converge to the (non-stochas- uniformly over X 3dX,t
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2. r has a finite variance and its expected value the general speed learning algorithm converges tot

*given x , a , y is equal to r x , a , y , E .s dt t t t t t

3. all possible (x, v) pairs are experienced infinitely
often, Proof. Let X 3 dX be the set of (x, v) pairs and% be

4. the coefficients a 5a x , v satisfy the Robbins–s d the set ofX 3dX → R speed value functions. Fur-t t t t

Monro conditions, thermore, let
ˆ5. every F is Lipschitz-continuous with constant K,t

ˆ 12a , if (x, v)5 (x , v ),i.e. there exists a constant K such that iF x ,s t t tt 1
ˆ G (x, v)5 (C.7)v 2F x , v i<Ki x , v 2 x , v i for all x , Htd s d s d s d1 t 2 2 1 1 2 2 i 1, otherwisev , t.i

and
ˆProof. T 5R S , where R 5F and S is the Rob-t t t t t t

ga , if (x, v)5 (x , v ),bins–Monro-type iterated averaging. By condition t t t
F (x, v)5 (C.8)Ht(1), R →F w.p.1 uniformly, by conditions (2)–(4)t 0, otherwise.F̂S → % r 1g E . Consequently, by Lemma 4,s dt E

FT (E) converges to % r 1g ^ E w.p.1s d It is easy to check thatT , G and F satisfy thet E t t t
uniformly. h conditions of Theorem 7. ThereforeE converges tot

*E . h
´Theorem 7. (Szepesvari & Littman, 1999) Let T be

*an arbitrary mapping with fixed point V , and let Tt Remark 9. In words, the above theorem means that
*approximate T at V with probability one uniformly the learning of the speed value function and the

over X. Let V be an arbitrary value function, and0 learning of the inverse dynamics can be accom-
define V 5 T (V , V ). Let the set 9(X) of boundedt11 t t t plished simultaneously.
real-valued functions over X denote the set of value
functions. If there exist functions 0<F (x)<1 andt From this result, the convergence of the SARSA-like
0<G (x)< 1 satisfying the conditions below witht learning algorithm with the following update rule

*probability one, then V converges to V witht follows, e.g. for´-greedy policy(Singh et al., 2000):
probability one uniformly over X:

p pE x , v 5 12a x , v E x , vs d s s dd s dt11 t t t t t t t t
1. for all U , U [9 and all x [X, p1 2 1a x , v r 1gE x , v . (C.9)s ds d s dt t t t t t11 t11

* *uT U ,V (x)2T U ,V (x)u<G uU (x)2U (x)us d s dt 1 t 2 t 1 2
It may be important to note that the convergence has

(C.4) been proved for a non-Markovian process.

2. for all U, V [9 and all x [X,
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