Rounding solutions in SOCP

Imre Pólik, Julio C. Góez
SAS Institute
Cary, NC, USA

ICCOPT 2013, Lisbon
Outline

1. Complementarity in SOCP
2. The rounding LPs
3. Numerical results
4. Further questions
Problem definition

SOCP, primal form

\[
\begin{align*}
\min & \quad \sum_{i=1}^{K} (c_i^0, c_i)^T (x_i^0, x_i) \\
\text{s.t.} & \quad \sum_{i=1}^{K} (A_i^0, A_i)(x_i^0, x_i) = b \\
& \quad (x_i^0, x_i) \in K_i, \ i = 1, \ldots, K,
\end{align*}
\]
Problem definition

SOCP, primal form

\[
\begin{align*}
\min & \quad \sum_{i=1}^{K} c^T_i x_i \\
\text{s.t.} & \quad \sum_{i=1}^{K} A^i x^i = b \\
& \quad x^i \in \mathcal{K}_i, \ i = 1, \ldots, K.
\end{align*}
\]
Problem definition

SOCP, primal form

\[
\begin{align*}
& \text{min} \quad \sum_{i=1}^{K} c^i x^i \\
& \quad \sum_{i=1}^{K} A^i x^i = b \\
& \quad x^i \in \mathcal{K}_i, \ i = 1, \ldots, K.
\end{align*}
\]

Algorithms

Solved with IPM
Optimal solution is dense (high rank)
Terlaky, Wang: *On identification of the optimal partition of SOCPs*
Complementarity and optimal partitions

Terlaky, Wang: *On identification of the optimal partition of SOCPs*
Jordan frames

Rank-1 decomposition for SOCP

\[x = \lambda_1 u_1 + \lambda_2 u_2 \]

\[u_1, u_2 \in \mathcal{K}, \quad u_1^T u_2 = 0, \]

\[\|u_1\| = \|u_2\| = 1/\sqrt{2} \]

\(\lambda_1, \lambda_2: \) Jordan values

\(u_1, u_2: \) Jordan frame

Easy to compute

\[x = (x_0, x) = (x_0 + \|x\|) \left(\frac{1}{2}; \frac{x}{2 \|x\|} \right) + (x_0 - \|x\|) \left(\frac{1}{2}; \frac{-x}{2 \|x\|} \right) \]
Optimal rounding LP

Algorithm

1. Take an optimal IPM solution
2. Fix its Jordan frame
3. Optimize the Jordan values
4. Form a new solution with the original Jordan frame and the optimized Jordan values

Properties

- Two nonnegative variables per cone
- Rounded solution is still optimal
- The dual solution is dual feasible for the original SOCP
- At most m Jordan values are nonzero (sparse solution)
Optimal rounding LP

Decomposition

Optimal solution: \(\mathbf{x} = (x^1, \ldots, x^K) \).

\[
x^i = (x_0^i, x^i) = \bar{\lambda}_+^i \left(\frac{1}{2}; u^i \right) + \bar{\lambda}_-^i \left(\frac{1}{2}; -u^i \right), \ i = 1, \ldots, K.
\]

where \(\|u^i\| = 1/2 \) and \(\bar{\lambda}_+^i, \bar{\lambda}_-^i \geq 0 \).
Optimal rounding LP

Decomposition

Optimal solution: \(\mathbf{x} = (\mathbf{x}^1, \ldots, \mathbf{x}^K) \).

\[
\mathbf{x}^i = (x_0^i, x^i) = \overline{\lambda}_+^i \left(\frac{1}{2}; u^i \right) + \overline{\lambda}_-^i \left(\frac{1}{2}; -u^i \right), \quad i = 1, \ldots, K.
\]

where \(\|u^i\| = 1/2 \) and \(\overline{\lambda}_+, \overline{\lambda}_- \geq 0 \).

Rounding

\[
\min \sum_{i=1}^{K} \lambda_+^i (c_0^i, c^i)^T \left(\frac{1}{2}; u^i \right) + \sum_{i=1}^{K} \lambda_-^i (c_0^i, c^i)^T \left(\frac{1}{2}; -u^i \right)
\]

\[
\sum_{i=1}^{K} \lambda_+^i (A_0^i, A^i) \left(\frac{1}{2}; u^i \right) + \sum_{i=1}^{K} \lambda_-^i (A_0^i, A^i) \left(\frac{1}{2}; -u^i \right) = b
\]

\(\lambda_+, \lambda_- \geq 0, \quad i = 1, \ldots, K \)
Example

\[
\begin{align*}
\text{min} & \quad 0 \\
1x_1 + 2x_2 + 3x_3 + 2x_4 & = -2 \\
-1x_1 + 2x_2 - 3x_3 + 4x_4 & = 0 \\
x_1 & \geq 0 \\
x_2 & \geq \sqrt{x_3^2 + x_4^2}
\end{align*}
\]

IPM

Optimal solution:
\[x = (2.98, 7.57, -3.12, -5.38)\]

Jordan values: 2.98, 0.95, 9.75

Rank: 3

Duality: (B, B)

Rounding

Optimal solution:
\[x = (0.08, 1.68, -0.84, -1.45)\]

Jordan values: 0.08, 0, 2.38

Rank: 2

Duality: (B, T)
Example

\[
\begin{align*}
\text{min } 0 \\
1x_1 + 2x_2 + 3x_3 + 2x_4 &= -2 \\
-1x_1 + 2x_2 - 3x_3 + 4x_4 &= 0 \\
x_1 &\geq 0 \\
x_2 &\geq \sqrt{x_3^2 + x_4^2}
\end{align*}
\]

IPM

Optimal solution:
\[x = (2.98, 7.57, -3.12, -5.38)\]
Jordan values: \[2.98, 0.95, 9.75\]
Rank: 3
Duality: \((B, B)\)

Rounding

Optimal solution:
\[x = (0.08, 1.68, -0.84, -1.45)\]
Jordan values: \[0.08, 0, 2.38\]
Rank: 2
Duality: \((B, T)\)

How good does the optimal solution need to be?
Rounding intermediate solutions

Algorithm
1. Take an intermediate IPM solution
2. Fix its Jordan frame
3. Optimize the Jordan values
4. Form a new solution with the optimized Jordan values
5. Stop IPM if rounded solution is good

Issues
- Intermediate solutions are not feasible
 » they still have a Jordan frame, take primal, dual or both
- Primal and dual Jordan frames are different
 » lack of complementarity
 » the rounded solution may not be feasible
 » infeasibility measures solution quality
- Rounding problem may be infeasible
How good is it?

Computational setup

- 25 instances
 - FIR filter
 - scheduling
 - robust radiation therapy treatment planning
- IPM solves with SeDuMi 1.3 in Matlab R2011a (64bit)
- Primal rounding with CPLEX 12.5 (default on 15 threads)
- Experiments run by Julio Góez at Lehigh University

General findings

Some of the LPs are very hard
Problems behave differently
Computational results -- the perfect

socp4s -- Primal infeasibility

- IPM
- Rounding

Copyright ©2012, SAS Institute Inc. All rights reserved.
Computational results – the perfect

socp4s -- Primal objective

- IPM
- Rounding

Copyright ©2012, SAS Institute Inc. All rights reserved.
Computational results – the good

firl2L1eps -- Primal infeasibility

- IPM
- Rounding

Copyright ©2012, SAS Institute Inc. All rights reserved.
Computational results – the good

firL2L1eps --- Primal objective

- IPM
- Rounding

Copyright ©2012, SAS Institute Inc. All rights reserved.
Computational results – the bad

sched5050scaled -- Primal infeasibility

- IPM
- Rounding

Copyright ©2012, SAS Institute Inc. All rights reserved.
Computational results – the bad

sched5050scaled -- Primal objective

- IPM
- Rounding
Interpretation and questions

- Rounded solutions are often feasible
- Rounded solutions can be optimal early
- Convergence of the Jordan frame
- Apply to SDP?
 - eigenvectors are expensive
 - small-dimensional SDP blocks (maybe from a decomposition?)
- Warmstarted rounding
- Emphasize complementarity in IPM
- Identify the cause of bad numerics in the rounding LPs
- Primal-dual rounding: combine Jordan frames
 - 4 variables per cone
Questions?

imre@polik.net
Dual rounding

Decompose the dual solution

\[s^i = (s_0^i, s^i) = \bar{\lambda}_+^i \left(\frac{1}{2}; u^i \right) + \bar{\lambda}_-^i \left(\frac{1}{2}; -u^i \right), \quad i = 1, \ldots, K. \]

Dual rounding LP

\[
\begin{align*}
\max & \quad b^T y \\
y^T (A_0^i, A^i) \left(\frac{1}{2}; u^i \right) & \leq (c_0^i, c^i)^T \left(\frac{1}{2}; u^i \right), \quad i = 1, \ldots, K, \\
y^T (A_0^i, A^i) \left(\frac{1}{2}; -u^i \right) & \leq (c_0^i, c^i)^T \left(\frac{1}{2}; -u^i \right), \quad i = 1, \ldots, K.
\end{align*}
\]
Dual of dual rounding

\[
\min \sum_{i=1}^{K} \lambda^i_+ (c_0^i, c^i) \mathbf{T} \left(\frac{1}{2}; u^i \right) + \sum_{i=1}^{K} \lambda^i_- (c_0^i, c^i) \mathbf{T} \left(\frac{1}{2}; -u^i \right) \\
\sum_{i=1}^{K} \lambda^i_+ (A_0^i, A^i) \mathbf{T} \left(\frac{1}{2}; u^i \right) + \sum_{i=1}^{K} \lambda^i_- (A_0^i, A^i) \mathbf{T} \left(\frac{1}{2}; -u^i \right) = b \\
\lambda^i_+, \lambda^i_- \geq 0, \quad i = 1, \ldots, K.
\]