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Outline

The semidefinite
optimization
problem

Converting into
standard form

General form

Semidefinite programming
Special and general cases
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Outline

The semidefinite
optimization
problem

Standard form

Converting into
standard form

General form

Semidefinite optimization - simplified notation

The unknown is a matrix:

min C •X max bT y

AX = b A∗y + S = C

X � 0 S � 0

C, X, S are n× n symmetric matrices

b, y ∈ Rm are vectors

A : Rn×n → Rm is a linear operator
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Block-diagonal form – I

Multiple unknowns:

min C1 •X1+ C2 •X2 max bT y

A1X1+ A2X2 = b A∗1y + S1 = C1

A∗2y + S2 = C2

X1 X2 � 0 S1, S2 � 0

C1,2, X1,2, S1,2 are n× n symmetric matrices

b, y ∈ Rm are vectors

A1,2 : Rn×n → Rm is a linear operator

X1 and X2 can be of different size
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Block-diagonal form – II

C1 •X1 + C2 •X2 =
(

C1

C2

)
︸ ︷︷ ︸

C

•
(

X1

X2

)
︸ ︷︷ ︸

X

A1X1 +A2X2 =
(
A1

A2

)
︸ ︷︷ ︸

A

(
X1

X2

)

min C •X max bT y

AX = b A∗y + S = C

X � 0 S � 0

Any number and size of PSD blocks can be converted into
one block.
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Linear programming

Assume C, X, S and Ai are diagonal:

X � 0⇔ diag(X) = x ≥ 0

C •X = diag(C)T diag(X) = cT x

Ai •X = diag(Ai)T diag(X) = aT
i x

min cT x max bT y

Ax = b AT y + s = c

x ≥ 0 s ≥ 0

Linear programming can be cast as SDP using diagonal
matrices.

Also, as a product of 1× 1 SDPs.
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The Lorentz cone

(Essentially) equivalent formulations:

Ln = {u : u1 ≥ ‖u2:n‖2} ⊂ Rn

Ln
r =

{
u : u1u2 ≥ ‖u3:n‖22 , u1, u2 ≥ 0

}
⊂ Rn

Standard scalar product: uT v

For (u, v) ∈ L: uT v ≥ 0 (nontrivial)

Self-dual: (Ln)∗ = Ln

Also called: second-order, ice-cream or quadratic cone

SDP representation (arrowhead matrix):

u ∈ Ln ⇔
(

u1 uT
2:n

u2:n u1I

)
� 0
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Second-order cone programming (SOCP)

One cone:

min cT x max bT y

Ax = b AT y + s = c

x ∈ Ln s ∈ Ln

Multiple (k) cones, different dimensions:

min
k∑

j=1

cjT
xj max bT y

k∑
j=1

Ajxj = b AjT
y + sj = cj , j = 1, . . . , k

xj ∈ Lnj sj ∈ Lnj , j = 1, . . . , k

Simplification? No!
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Mixed LP/SOCP/SDP

min cT
` x` +

k∑
j=1

cj
q
T
xj

q+C •X max bT y

AT
` y + s` = c`

A`x` +
k∑

j=1

Aj
qx

j
q +AX = b AjT

y + sj = cj , j = 1, . . . , k

A∗y + S = C

x` ≥ 0 s` ≥ 0

xj
q ∈ Lnj sj

q ∈ Lnj , j = 1, . . . , k

X � 0 S � 0

All of this can be included in one (big) SDP
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